111 research outputs found

    Cell seeding chamber for bone graft substitutes

    Get PDF
    There is an increasing demand for bone graft substitutes that are used as osteoconductive scaffolds in the treatment of bone defects and fractures. Achieving optimal bone regeneration requires initial cell seeding of the scaffolds prior to implantation. The cell seeding chamber is a closed assembly. It works like a sandglass. The position of the scaffold is between two reservoirs containing the fluid (e. g. blood). The fluid at the upper reservoir flows through the scaffold driven by gravity. Fluid is collected at the lower reservoir. If the upper reservoir is empty the whole assembly turned and the process starts again. A new compact cell seeding chamber for initial cell seeding has been developed that can be used in the operating theater

    Theoretical models of synaptic short term plasticity

    Get PDF
    Short term plasticity is a highly abundant form of rapid, activity-dependent modulation of synaptic efficacy. A shared set of mechanisms can cause both depression and enhancement of the postsynaptic response at different synapses, with important consequences for information processing. Mathematical models have been extensively used to study the mechanisms and roles of short term plasticity. This review provides an overview of existing models and their biological basis, and of their main properties. Special attention will be given to slow processes such as calcium channel inactivation and the effect of activation of presynaptic autoreceptors

    The Role of Non-Linearities in Visual Perception studied with a Computational Model of the Vertebrate Retina

    Get PDF
    Processing of visual stimuli in the vertebrate retina is complex and diverse. The retinal output to the higher centres of the nervous system, mediated by ganglion cells, consists of several different channels. Neurons in these channels can have very distinct response properties, which originate in different retinal pathways. In this work, the retinal origins and possible functional implications of the segregation of visual pathways will be investigated with a detailed, biologically realistic computational model of the retina. This investigation will focus on the two main retino-cortical pathways in the mammalian retina, the parvocellular and magnocellular systems, which are crucial for conscious visual perception. These pathways differ in two important aspects. The parvocellular system has a high spatial, but low temporal resolution. Conversely, the magnocellular system has a high temporal fidelity, spatial sampling however is less dense than for parvocellular cells. Additionally, the responses of magnocellular ganglion cells can show pronounced nonlinearities, while the parvocellular system is essentially linear. The origin of magnocellular nonlinearities is unknown and will be investigated in the first part of this work. As their main source, the results suggest specific properties of the photoreceptor response and a specialised amacrine cell circuit in the inner retina. The results further show that their effect combines in a multiplicative way. The model is then used to examine the influence of nonlinearities on the responses of ganglion cells in the presence of involuntary fixational eye movements. Two different stimulus conditions will be considered: visual hyperacuity and motion induced illusions. In both cases, it is possible to directly compare properties of the ganglion cell population response with psychophysical data, which allows for an analysis of the influence of different components of the retinal circuitry. The simulation results suggest an important role for nonlinearities in the magnocellular stream for visual perception in both cases. First, it will be shown how nonlinearities, triggered by fixational eye movements, can strongly enhance the spatial precision of magnocellular ganglion cells. As a result, their performance in a hyperacuity task can be equal to or even surpass that of the parvocellular system. Second, the simulations imply that the origin of some of the illusory percepts elicited by fixational eye movements could be traced back to the nonlinear properties of magnocellular ganglion cells. As these activity patterns strongly differ from those in the parvocellular system, it appears that the magnocellular system can strongly dominate visual perception in certain conditions. Taken together, the results of this theoretical study suggest that retinal nonlinearities may be important for and strongly influence visual perception. The model makes several experimentally verifiable predictions to further test and quantify these findings. Furthermore, models investigating higher visual processing stages may benefit from this work, which could provide the basis to produce realistic afferent input

    Effects of Fixational Eye Movements on Retinal Ganglion Cell Responses: A Modelling Study

    Get PDF
    Visual response properties of retinal ganglion cells (GCs), the retinal output neurons, are shaped by numerous processes and interactions within the retina. In particular, amacrine cells are known to form microcircuits that affect GC responses in specific ways. So far, relatively little is known about the influence of retinal processing on GC responses under naturalistic viewing conditions, in particular in the presence of fixational eye movements. Here we used a detailed model of the mammalian retina to investigate possible effects of fixational eye movements on retinal GC activity. Populations of linear, sustained (parvocellular, PC) and nonlinear, transient (magnocellular, MC) GCs were simulated during fixation of a star-shaped stimulus, and two distinct effects were found: (1) a fading of complete wedges of the star and (2) an apparent splitting of stimulus lines. Both effects only occur in MC-cells, and an analysis shows that fading is caused by an expression of the aperture problem in retinal GCs, and the splitting effect by spatiotemporal nonlinearities in the MC-cell receptive field. These effects strongly resemble perceived instabilities during fixation of the same stimulus, and we propose that these illusions may have a retinal origin. We further suggest that in this case two parallel retinal streams send conflicting, rather than complementary, information to the higher visual system, which here leads to a dominant influence of the MC pathway. Similar situations may be common during natural vision, since retinal processing involves numerous nonlinearities

    Building population models for large-scale neural recordings: opportunities and pitfalls

    Get PDF
    Modern recording technologies now enable simultaneous recording from large numbers of neurons. This has driven the development of new statistical models for analyzing and interpreting neural population activity. Here we provide a broad overview of recent developments in this area. We compare and contrast different approaches, highlight strengths and limitations, and discuss biological and mechanistic insights that these methods provide
    corecore